

DATA DRIVEN VALUE CREATION

DATA SCIENCE & ANALYTICS | DATA MANAGEMENT | VISUALIZATION & DATA EXPERIENCE

Agenda

Time	Content	Who
9.00	Introduction	Philipp
9.30	Hands-On 1: How to kick-start NLP	Jacqueline
10.15	Break / Letting People Catch up	All ;-)
10.45	About ELK	Philipp
11.00	Hands-On 2: Deep Dive	Jacqueline
12.15	Wrap up / Discussion	All

Today's hosts

Philipp Thomann

Here today & tomorrow morning

Jacqueline Stählin

Here today & Monday till Wednesday

Setup

Course Git

https://github.com/d-one/NLPeasy-workshop

For infos during Workshop

- https://tlk.io/amld2020-nlpeasy

«Making sense of data is the winning competence in all industries.»

Data drives Transformation

About

- Zurich-based, established in 2005 with focus: data-driven value creation
- 50 data professionals with excellent business and technical understanding & network
- International & Swiss clients
- In selected cases: investor for data-driven start-ups

Capabilities

Business Consulting

- Guide on data journey
- Use cases, roadmap
- Transformation and change
- Building capabilities

Machine Learning / Al

 Ideation, implementation, operationalization
 Algorithms, modelling, NLP
 Image recognition, visual analytics

Passionate & Down to earth

Data Architecture

- Data strategy
- Enterprise requirements
- Information factory
- BI and analytics
- Data science laboratory

Data Management

- Data supply chain
- Data integration and modelling
- Structured & unstructured data
- Automated development framework

- Text analytics

Data Experience

- From data to Insights to action
- Business report design
- Compelling data stories
- Communication & visualization

Visualizations - the "last mile" of data

Award winning visualizations in national and international media and competitions

Swiss Music Charts: Playful Digitization

https://50-jahre-hitparade.ch/

From the Data Story to the Saturday Night TV Show

Highly creative handling of data → enriched with spotify data

Data Stories development for SRF https://50-jahre-hitparade.ch/analysis

High-end implementation - broad range of tools (Web-GL, D3, Tableau)

NZZamSonntag

BZ BERNER ZEITUNG

watson Tages Anzeiger

9 100

Introduction

About Natural Language Processing (NLP)

- Big progress in last years
 - Word2Vec
 - Deep Learning
 - Pre-trained Models
- Abundant Use Cases
 - CRM entries, mails, documents, for classification, sentiment, named entity recognition (NER), translation, summarization, ...
 - Next big thing?
- Challenges for Data Scientists:
 - Models / tools have bad reputation?
 - Standard tools (e.g. plotting, SQL-DBs, Dashboars) cumbersome for exploration

NLP Primer

- Handling Texts
 - Tokenization, Stopwords
 - Scenarios: Classification, Topic Modeling, Sentiment Analysis
 - Make it amenable for ML
- Libraries (python)
 - classical: nltk, gensim
 - word2vec, FastText, Sent2Vec
 - "industrial-strength NLP": spaCy
 - Deep Learning: TensorFlow, BERT, ...
- Libraries (R):
 - tidytext, reticulate, ...

NLP 101 - From Text to Vector

Traditional NLP: Frequency of each word in Text

infinity	endgame	civil	first	war	captain	america	the	avenger(s)
							1	1
		1		1	1	1		
			1		1	1	1	1
1				1				1
	1							1

NLP 102 - Word2Vec: Estimate distribution based on context

Vectors then can be used for:

- Topic Modelling: Consider top eigenvalues of matrix
 - ⇒ Each eigenvector is a "topic"
- TF-IDF (Term-Frequency Inverse-Document-Frequency): For a word, divide its frequency in a given document by its frequency in general

spaCy

```
import spacy
import numpy as np
import matplotlib.pyplot as plt

[2]: nlp = spacy.load('en_core_web_md')

[3]: words = 'man woman king queen'.split()
v = { i: nlp.vocab[i].vector for i in words }
matrix = np.stack(list(v.values()))

[4]: plt.figure(figsize = (5,2))
ax = plt.plot(matrix[:,0], matrix[:,1], '*')
for i, word in enumerate(words): plt.text(matrix[i,0], matrix[i,1], word, size=22)
```



```
[5]: k,r,s = nlp.vocab.vectors.most_similar( (v['king'] - v['man'] + v['woman']).reshape(1,-1), n=10)
for K,R,S in zip(k[0],r[0],s[0]):
    print(nlp.vocab[K].text,R,S,)
```

King 2182 0.8024 KIng 3149 0.8024 Queen 5309 0.7881 QUEEN 6025 0.7881 COMMONER 11899 0.6401 Prince 7473 0.6401 Kings 6602 0.6209 SULTANS 9575 0.6209 Princess 8297 0.6126 PRINCESSES 9117 0.6126

Installation:

pip install spacy
python -m spacy download de
python -m spacy download en

Features

- share a CNN based on embedding
- predict super tag for POS, morphology and dependency label
- trade a little accuracy for lot of speed
- implemented in cython

Linguistic Features

Word	Fischers	Fritz	fischt	frische	Fische
Lemma	Fischer	Fritz	fischen	frisch	Fisch
POS	NOUN	PROPN	VERB	ADJ	NOUN

spaCy

```
import spacy
nlp = spacy.load('de')
doc = nlp(u'Fischers Fritz fischt frische Fische.')
for toc in doc:
    print( toc.text, toc.pos_, toc.dep_, spacy.explain(toc.dep_), toc.head )
spacy.displacy.render(doc, jupyter=True)
```

Fischers PROPN ag genitive attribute Fritz Fritz PROPN sb subject fischt fischt VERB ROOT None fischt frische ADJ nk noun kernel element Fische Fische NOUN oa accusative object fischt . PUNCT punct punctuation fischt

Installation:

pip install spacy
python -m spacy download de
python -m spacy download en

Features

- share a CNN based on embedding
- predict super tag for POS, morphology and dependency label
- trade a little accuracy for lot of speed
- implemented in cython

Why NLPeasy

- Quick-start toolkit for general data scientists to start exploratory analysis of textual data
- Out-of-the-box features for the texts in your data:
 - Vader sentiment analysis
 - SpaCy
 - Word2Vec
- Explore your data in search engine (Elasticsearch) and a powerful dashboard framwork (Kibana)
- Quickly gain an overview with automatically built Kibana dashboard
- Take it from there and reveal insights!

Quick Demo

Connect to Elastic and Kibana or start in Docker (optionally)

Read / clean data in pandas, here title and abstract of NIPS papers ⇒ message, title, author, year, ...

Start Pipeline

Regex to extract LaTeX-Math
⇒ Tag-col: math

Calculate Sentiment of message ⇒ Num-col: sentiment

NLP-methods based on SpaCy ⇒ Tag-cols: message_entity, message subj, title subj, ...

```
[1]: import pandas as pd
import nlpeasy as ne
```

[3]: elk = ne.connect_elastic(dockerPrefix='nlp', dockerElkVersion='7.1.1', dockerMountPoint=None)

'No elasticsearch on localhost:9200 found, trying connect to docker container with prefix nlp'
'No docker container with prefix nlp; starting one'

ElasticSearch on http://localhost:32774

Kibana on http://localhost:32775

Get some data we already prepared

```
nips = pd.read_pickle('./nips.pickle')
nips.shape
```

[4]: (8250, 20)

Setup the pipeline

Let's to the magic

```
[6]: prips_enriched = pipeline.process(nips, writeElastic=True)
```

8250/8250 [=======] - 4:53 36ms/step

Setup of ElasticSearch
Type of column is mapped

Run the p
100 record

Run the pipeline in batches of 100 records

Write the results to Elastic

NLPeasy

Toolbox that enables quick and easy integration of many well-known NLP tools into a quick but powerful workflow:

- Pandas based pipeline enabling:
 - Regex-based Tagging
 - **SpaCy**-based NLP-methods: Named Entity Recognition, Syntax Analysis
 - Vader SentimentAnalysis (en)
 - Support for Scraping using BeautifulSoup
 - ... all you want to add
- Write results to ElasticSearch
 - Add good default config (mappings)
 - Support of iterative workflow (todo)
- Gives a quick Bootstrap and then allows for an agile workflow to use the power of the tools to get more insights
- Simple start of Elastic/Kibana servers in **Docker** if needed.
- Apache License 2.0, https://github.com/d-one/NLPeasy,
- pip install nlpeasy
- https://github.com/d-one/NLPeasy/blob/master/demo.ipynb

Automatic Dashboard Generation

Based on the column types different visuals are created, all integrated into a dashboard:

```
[7]: pipeline.create_kibana_dashboard()
     nips: adding index-pattern
     nips: setting default index-pattern
     nips: adding search -
     nips: adding visualisation for year
     nips: adding visualisation for math
     nips: adding visualisation for message_ents
     nips: adding visualisation for message_subj
     nips: adding visualisation for message verb
     nips: adding visualisation for title ents
     nips: adding visualisation for title_subj
     nips: adding visualisation for title_verb
     nips: adding visualisation for message
     nips: adding visualisation for title
     nips: adding visualisation for sentiment
     nips: adding dashboard
     nips: setting time defaults
```

The automatic Visualisations can be changed in the Kibana UI.

Soon: Also auto-visualisations for Networks and GeoLocation (as in examples)

Restaurant similarity

- Based <u>only</u> on similarity of reviews
- Clusters detect review similarity for
 - vegetarian places
 - beer halls
 - ethnic food
 - decor

Average sentiment score of restaurant reviews

Insideparadeplatz.ch - what is it and what does it stand for?

Hands-On 1: How to kick-start NLP

Let's get started

Today's dataset: **OK Cupid** (volunteered sample from San Francisco)

- features: age, body type, diet, education, sex ...
- textual data:
 - essay0- Myself summary
 - essay1 What I'm doing with my life
 - essay2- I'm really good at
 - essay3- The first thing people usually notice about me
 - essay4- Favorite books, movies, show, music, and food
 - essay5- The six things I could never do without
 - essay6- I spend a lot of time thinking about
 - essay7- On a typical Friday night I am
 - essay8- The most private thing I am willing to admit
 - essay9- You should message me if...

Break

Elasticsearch & Kibana

Elasticsearch and Kibana

- Elasticsearch is a distributed, open source, enterprise-grade search and analytics engine for all types of data, including textual, numerical, geospatial, structured, and unstructured.
- based on Apache Lucene (full text, fuzzy, auto-completion, faceting)
- Kibana is an open source analytics and visualization platform designed to work with Elasticsearch.

Common use cases:

- Large Search Systems (e.g. for Wikipedia)
- Logfile analysis

Elasticsearch Intro

- Document Database
- Organized in Indices (like DB or Schema in SQL-DB)
- Connection via REST-API good Interface in Kibana Dev Tools
- "Schema-less", but you need to have one for our cases

Hands-On 2: Deep Dive

Deep Dive

After looking at Kibana Dashboards, you might have generated some hypotheses.

E.g.:

- University graduates can be identified from the text they have written and other features
- People who write about the same topics are also similar according to other features → clustering

Let's answer some of these.

Wrap-Up

Roadmap for NLPeasy

Version 0.8	Features:	- Support for scraping / asyncio
		- Support for FastText-Vectors (both independent and in spaCy)
		- Lang support
		- Automated Map for geolocs
		- Stages: Split, clean HTML
	Package:	- More Documentation, readthedocs
		Package:
Version 0.9	Features:	- Security: User/Password; HTTPS; listening only on localhost?
		- Setup pipelines in yaml
		- CLI
		- Support for scheduled update of data
		- Support for BERT and ERNIE
Version 1.0	Features:	- Support for training of models: Spacy-NER, Word2Vec, etc.
		- Security considerations for Elastic: Password, HTTPS

LET'S MAKE SENSE

Philipp Thomann philipp.thomann@d-one.ai

+ 41 79 747 45 66

Jacqueline Staehlin jacqueline.staehlin@d-one.ai

+ 41 76 477 05 04

D ONE Solutions AG Sihlfeldstrasse 58 CH-8003 Zürich

